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ABSTRACT

Solar power is important for many scenarios of the Internet
of Things (IoT). Resource-constrained devices depend on lim-
ited energy budgets to operate without degrading performance.
Predicting solar energy is necessary for an efficient manage-
ment and utilization of resources. While machine learning is
already used to predict solar power for larger power plants,
we examine how different machine learning methods can be
used in a constrained sensor setting, based on easily avail-
able public weather data. The conducted evaluation resorts to
commercial IoT hardware, demonstrating the feasibility of the
proposed solution in a real deployment. Our results show that
predicting solar energy is possible even with limited access to
data, progressively improving as the system runs.
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INTRODUCTION

Energy harvesting provides a sustainable source of power for
Internet of Things (IoT) nodes and also simplifies their deploy-
ment. The downside is that their performance often changes
considerably over time. In case of solar energy, variations oc-
cur throughout the seasons and depend on climatic parameters
like weather, temperature, solar irradiance, hourly solar an-
gle, season and geographical location [26, 27]. Tilt angle and
orientation of the solar panel [8], and other effects like shad-
ows [15, 18], also influence the output that can be produced
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by a stationary photovoltaic (PV) panel. Rechargeable bat-
teries dampen fluctuations through energy buffering, but only
to some degree. For instance, within a project involving the
deployment of solar-driven nodes to measure greenhouse gas
emissions [3], sensor devices worked properly during summer,
but failed during winter when sun exposure was lacking.

Data quality and energy consumption are closely related [14].
Instead of abruptly running out of power, nodes should adapt
their operation [11]. Sensor devices can for instance average
over several measurements to reduce the number of transmitted
messages and save power [17]. On the other hand, to increase
accuracy and adapt to sudden and unexpected changes, sensors
may increase their sampling rate at the cost of increased energy
consumption [5]. Additionally, systems consisting of several
nodes may also balance the load between them, improving
energy consumption while providing a good overall sensing
coverage [28].

Node failure due to lack of energy is one problem; another is
to not use enough of the available energy to gain better data.
When a battery is fully charged, all solar energy that exceeds
the consumption of a node is wasted [13]. Instead, the sensor
node could have consumed more energy and thereby acquired
more data or data with higher accuracy. For that, sensors
need to be aware of their current and future energy budget
and plan ahead so that they can operate optimally. Due to the
scale of 10T, such optimizations must happen autonomously.
And since sensors are placed into heterogeneous and changing
environments, optimizations must happen continuously and
for each sensor individually. One method of choice is machine
learning to predict the energy budget of a sensor node. An
important component in such a prediction is the solar energy,
which depends on features such as the position of the sun
relative to the solar panel, the atmosphere and other effects.

Forecasting the available solar power with different time hori-
zons is already part of the operation of solar power plants,
to predict fluctuations in energy production and quickly com-
pensate for sudden changes. These deployments are usually
large in scale and can look back on a long history of avail-
able data of dedicated sensor information, for instance by
observing the clouds in the sky by cameras, and even allow
for manual supervision [9]. In an IoT setting, such a high de-
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gree of instrumentation and supervision is unrealistic. Sensor
nodes are placed at many different locations, and requiring
specific orientation towards the sun would complicate the de-
ployment process. Adding more instrumentation to nodes (like
irradiation measurement or sky cameras observing the cloud
coverage) would make them more expensive and complex.
Instead, systems should be based on off-the-shelf sensor nodes
and require only minimal instrumentation and setup.

In this paper, we present the results of an experiment on a
prototype designed to investigate how and to which degree
machine learning algorithms can be used to predict the solar
energy budget for sensor nodes, based on easily available input
data. In detail, our contributions are the following:

e An explanation of effects in embedded systems that need to
be taken into account with a set of data preparation steps to
gain good training data.

e A study of which features are most effective as input for
solar energy prediction.

e A study of different machine learning algorithms and how
they score as predictors.

One of the most crucial factors for success in machine learning
is the availability of data. Due to the heterogeneity of environ-
ments into which sensor devices are deployed, this may be a
problem. We therefore also study how the approach develops
over time, starting with no initial data.

The focus of this paper is the prediction of solar energy. Never-
theless, we also outline the planning algorithm that selects the
proper sensor operation mode, since it gives context to the so-
lar energy prediction. Our approach also takes the constraints
typical in IoT into consideration: Since machine learning is
executed on a server as part of the device management, sensor
nodes only require minimal computational effort. As commu-
nication we use the constrained LoRaWAN protocol.

RELATED WORK

Machine learning is already widely used in big scale forecast-
ing for large solar-power farms. Weather data from numerous
sources are blended with several models and methods via post
processing, in order to produce the most accurate solar-energy
forecast possible [9]. This requires high computational power
and access to large amounts of data. However, these systems
use highly specialized models tuned to the specific location of
the solar farm. For more distributed energy resources, where
small scale photovoltaic panels are connected to a smart grid,
making an accurate prediction of the expected output is also
important. These are used to forecast and plan the total distri-
bution of the produced energy over the entire energy grid [24,
27]. In contrast to the solar farms, this needs to be done with
more generalized models and less fine-grained weather data.
The power produced by a PV-panel highly depends on the
irradiation reaching it. Shi et. al [19] propose a forecasting
model to predict the output of PV-panels based on a classi-
fication of the weather. They show that weather conditions,
clouds, solar angle, and season are factors that must be taken
into consideration when predicting the energy budget for a
solar-energy harvesting device.
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Figure 1. Overview of the system.

Kansal et al. [12] show how power management is inherently
different for a node using energy-harvesting compared to one
powered by battery only. This is due to the variability of
available energy and because conventional energy optimiza-
tion methods are not always optimal in an energy-harvesting
scenario. As such, it is important to adapt the workload to the
amount of energy that can be harvested. They demonstrate
how a closed-loop electronic circuit can be used to predict
and plan the energy budget to achieve energy-neutrality. How-
ever, they do not consider the usage of weather forecasts in
their energy planning algorithm, since they assume that the
expected energy production is typically the same on a given
time for consecutive days. This, however, does not apply to
many parts of the world, where the weather condition can shift
from day to day, and even from hour to hour. Hsu et al. [10]
propose a modified power management method that is taking
unstable and uncontrollable conditions into consideration, us-
ing reinforcement learning. They claim their method gives a
performance increase of 2.3 % in summer time.

Constrained devices that scavenge for energy in a location
where weather conditions are shifting, need to be able to pre-
dict their energy budget to keep a steady battery level. Szydlo
et al. [22] propose a concept of a two-stage predictive power-
adaptation method that uses weather forecast services to plan
how much energy it is possible to harvest from the wind in the
near future. Their aim is to create a power management system
that address the problem of optimal control of battery neutral-
ity under shifting weather conditions, and that at the same time
can guarantee a satisfactory level of functionality. Based on
these plans, they propose to change the energy consumption of
the devices by switching between four operation modes, which
use different amounts of energy. This is a similar approach to
ours. However, their results are based on values gathered from
a simplified test unit and then run in simulations, while we are
using an off-the-shelf sensor station and have built a prototype
for running the test and measure the actual values.



Figure 2. Testbed with five of the eight sensor nodes.

SYSTEM OVERVIEW
Figure 1 shows an overview of the system. It consists of sensor
nodes that communicate via gateways with a backend server.

Sensor Nodes

We deployed eight Waspmotes [16] from Libelium, shown
in Figure 2. They are based on the 8-bit Atmegal281 mi-
crocontroller. Each sensor node is coupled with sensors to
measure CO,, temperature, pressure and humidity. Some sen-
sors also measure particle matters (PM) and NO,.. However,
since, we focus on the energy management, only the energy
consumption of the sensors is relevant in the following. The
CO, sensors, for instance, include a heater to correctly cap-
ture the gas density at a specific temperature. Therefore, they
require a considerable amount of energy when sensing.

Each sensor node is powered by a lithium-ion polymer (LiPo)
battery with the capacity of 6600 mAh and a maximum voltage
of 4.2 V. The battery is connected via a charging controller to
a solar panel, which can provide a current of up to 330 mA.
For this experiment, all solar panels face the same direction.
The controller protects the battery from overcharging, which
has some implications for our data as explained later.

The sensor nodes periodically execute sensing cycles, i.e., they
wake up, make some measurements, send the results to the
LoRaWAN gateway and then go into sleep mode again. To
adjust their behavior, sensor nodes can be configured using
discrete sensing modes [23]. Each sensing mode assigns spe-
cific values to the length of the sleep cycle and the number of
measurements within each sensing cycle. The sensing modes
are designed so that a lower sensing mode yields less frequent
measurements and less samples per sensing cycle, and accord-
ingly uses less energy. Higher sensing modes provide more
and better data and use more energy.

Network

For the wireless connection, we use LoRaWAN (868 MHz
and 433 MHz ISM band) [20]. The corresponding gateway
is deployed 500 meters away and connected to The Things
Network (TTN, [2]). Before put into deep sleep, sensor nodes
transmit the necessary data required by the backend server to
TTN'’s gateways via the LoORaWAN uplink channel. This is the
actual sensor data together with the energy-related data i.e.,
the battery voltage, the incoming solar current and the sensing
mode. From TTN, our server fetches the data of all sensor
nodes at regular intervals, as explained later. LoRaWAN also
provides a downlink channel from the server towards the sen-
sor nodes. We use this channel to update the sensing mode
in the sensor nodes as a result of the energy planning. The
fair access policy of LoORaWAN and TTN limits the uplink

transmission to a 30 seconds airtime per day per node, which
corresponds to roughly 647 bytes per day, given the spreading
factor of 7. The downlink is even more restricted, with 10
messages per day per node.

Server Backend

The server backend collects all data and has the task to deter-
mine the optimal sensing mode for each sensor node. Figure 3
provides an overview. The server operations are coarsely struc-
tured into learning, predicting and planning.

The server repeatedly collects the data sent via LoORaWAN to
The Things Network (TTN) from their servers (1). This raw
byte data is decoded so that the individual data fields can be
stored as files in CSV format. The server also collects weather
forecast data (2). Both the weather and the sensor device data
are combined into training and testing data for the various
machine learning methods (3), explained later in detail.

For the prediction part, there are three machine learning mod-
ules. The first one (5) predicts the solar energy output based
on the weather data and time, and is the main focus of this
paper. The other two modules are used to predict the expected
battery level based on the incoming solar current (6), and to
predict the energy consumption for a sensor node given its
sensing mode (7).

The prediction modules contain different machine learning
algorithms, detailed later. They are trained by corresponding
modules. This means, for instance, if (5) is a neural network,
(4) encapsulates the execution of the backpropagation algo-
rithm to train it.

The planning module (8) uses the prediction modules to simu-
late several potential energy budgets for a day, given different
sensing modes. These potential budgets are then evaluated,
which leads to the selection of the best sensing mode for each
sensor node, which is then sent back to the them as a sensing
mode update, via LoORaWAN.

DATA ACQUISITION
Table 1 lists the data required for learning.

Table 1. Overview of input data

Energy data battery voltage, solar charge current, sens-
ing mode
Weather data  forecast time, production time, location,

temperature, wind speed, wind direc-
tion, pressure, humidity, cloudiness (high,
medium, low, total), fog, dewpoint tem-
perature, precipitation, weather symbol

Sun position zenith, azimuth

Energy Data from Sensor Nodes

The firmware of the Waspmotes provides access to the voltage
at the battery and the current arriving from the solar panel. The
latter is a good indicator for the available solar energy, and
will be the value to be predicted by our algorithms in the next
section. There is one caveat with the current from a solar panel:



Filtered R Plan
TTN (1) sensor data "|Prepare training Learning solar | _ ] Predict solar
> oSV samples (3) [~ — ™| energy intake (4) energy intake (5) Predicted

N—"N T T l solar energy
met.no (2) —— : L N I';eta’:rning R R Prgdi%t battery
——»| .CSV litere attery gain ain i

weather data ‘ gan © Sensing mode
N\ | Planni update
anning (8)
L Learning energy Predict energy
***** ™ consumption T~~~ "~~~ === 77 = ~ ™ consumption (7)
©) Predicted
battery level
Learn Predict Plan
Figure 3. Overview of the operations in the server backend.
It only flows if the Waspmote also consumes energy. We will 100 : : : :
later see which consequences this has for the data preparation. % gol| = RealModel e e |
However, measuring the current from the solar panel is still 5 — Fitted Linear Model L
the best indication for the available solar energy. In contrast, g o0 : : : : i
only measuring the open-circuit voltage at the solar panel is > .
less useful. Solar panels are usually non-linear in terms of £ _
. . . . . . 4]

sunlight intensity versus output open-circuit voltage [4]. This 0 — ‘ ‘ ‘

means that the open-circuit voltage is an indication if the sun
is shining, but not very precise regarding the available energy.

Weather Forecast and Sun Position

The weather forecast data is collected from the Norwegian
Meteorological Institute via their publicly accessible API [1].
Forecasts are published at irregular intervals, about three times
a day. The different data fields are listed in Table 1. Each
weather forecast has a production timestamp, i.e., the time
when it was created. The weather forecast includes predictions
for several points in time in the future, each labelled by the
forecast timestamp. For each forecast timestamp, the report
lists several numerical weather values. Cloudiness is provided
at three different levels (low, medium, high) as well as an
aggregated value (total). The weather symbol is a discrete
value between 1 and 50 that encodes a weather scenario. For
instance, sun is encoded as 1, rain as 10 and snow as 13.

The position of the sun is expressed in terms of two angles,
azimuth and zenith. These can be calculated on the server
based on the location of the deployment and the time, i.e., this
data does not need to be collected.

DATA PREPARATION

The effectiveness of the machine learning algorithms depends
to large degrees on the preparation of the input data. This
preparation requires knowledge about the domain of the sys-
tem, i.e., the electrical properties of batteries, solar panels, the
charging controller and some knowledge about the sun and
weather forecasts.

Preparing Battery Level Data

For Li-ion/LiPo batteries, the battery level (also called state-of-
charge, SoC), and the voltage at the battery have a relationship
that can be approximated by a linear model as shown in Fig-
ure 4. It is therefore possible to estimate the battery level as
percentage from 0O to 100 based on the measured voltage at

Battery Voltage [V]

Figure 4. The relationship between the voltage and battery level.

the battery. For our experiment, we use the approximation
provided by Libelium as part of their firmware [7]. The con-
version from battery voltage to battery level in percent is only
an issue of understanding the data, since it is more conve-
nient to look at a percentage (0...100 %) than at a voltage
(= 3.3...4.2 V) when talking about the state of a battery. For
the actual prediction this conversion has little impact as long as
it is done consistently. In our case, we derive the battery level
from two approximated linear functions of the battery voltage
illustrated by the two connected solid lines, as opposed to the
unknown real model shown as dotted line in Figure 4, which
represents the general curve of Li-ion/LiPo batteries [6].

Preparing Current Data from Solar Energy

Figure 5 shows the solar current throughout three days. April
7th is a day with extremely varying weather, which makes
the solar current vary over the day. April 9th is a consistently
cloudy day, and April 12th is a very sunny day. The curve
of the sunny day shows a steep slope because of the sunrise
at around 6:00. However, at 8:45 the solar current drops to
zero. This is due to the charging controller. When the battery
level is rising above 98 % or 99 % (depending on the node), the
charging controller switches off charging and the Waspmote is
powered from the battery only, even if solar energy is available.
The charger switches back into the charging state once the
battery voltage falls below ~ 4.07V, which corresponds to
~ 83.7 % of battery level. This explains why there are periods
in which the solar current is zero despite the shining sun.

The machine learning algorithms need to know about this
charging behavior; otherwise, they would be confused by
sunny conditions that seemingly do not lead to the expected
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Figure 5. The solar current on three days with very different weather
conditions.

solar current. Adding data about the charging state is part of
the data preparation of the solar current. Since Waspmotes do
not provide any data regarding the state of the charger, we have
to guess it from the charging current and the battery level. For
this, we look for the point when charging stops, and observe
the battery level at the same point for all days of a node. Then
we select the highest battery level as the full battery threshold
for that node. The thresholds for all the nodes are used in the
data filtering program to assign battery full state to data points.
After every data point is marked with states, those with the
state battery full are removed.

Aggregation of Weather Forecast

Each forecast is provided as a table, where each row describes
the expected weather at specific points in time. For the close
future, this interval is one hour. For predictions further in
the future, these intervals are increasing to up to six hours.
Each row has therefore two timestamps: the time for which
the weather is predicted (forecast time), and the time when the
forecast was produced (production time). Since the forecasts
cover overlapping times, the data preparation selects for each
time the forecast where forecast time and production time
have the shortest distance. This means that the most up-to-
date forecast is selected.

ENERGY BUDGET PLANNING

The planning algorithm is only sketched in the following since
it is not the focus of this article, and rather provides context
for the machine learning and prediction of the solar power
current. This algorithm simulates the development of the
battery level, given that the node executes a specific sensing
mode. As input it uses the current battery level, the sensing
mode and the weather prediction. The planning algorithm
simulates the time ahead in intervals, for which we selected 30
minutes. It first uses the machine learning module for the solar
power prediction (see Figure 3 (5)) to predict the expected
solar current, detailed in the next section.

From the predicted solar current, the planning algorithm needs
to estimate how the battery will develop within the simulated
30 minute interval. This depends on two components: (1) how
much energy the sensor node consumes in the given sensing
mode, and (2) the energy added from the solar panel. These
two components can be estimated by two different modules,
and then added together, as done in Figure 3 (9)).

e To analyze the energy consumption of a given sensing mode
(Figure 3 (6)), we select periods during the night in which
the solar energy is zero. During these periods, the battery
level decreases. We analyze the slope, averaging over sev-
eral nights, which gives a good indication of the energy
consumption of the currently executed sensing mode.

e To come from the solar intake to the increase in battery
level, we need to determine a simple factor that calculates
the increase in battery level from the average solar current
for a given time interval. We currently estimate this factor
manually by comparing simulated data with real ones, but
we foresee also here automated statistical methods.

The plans for the different sensing modes are compared with
each other, based on a utility function that penalizes an empty
battery or wasting solar energy. The planning algorithm then
selects the sensing mode that leads to a plan with the best util-
ity, and updates the sensing mode of a sensor node accordingly,
using the downstream LoRaWAN channel.

SOLAR POWER PREDICTION

The biggest unknown influence on the energy budget is the
availability of solar energy, which varies considerably between
days based on the weather. The following section shows the
prediction accuracy of the solar current of different machine
learning methods, taking the weather forecast and solar angles
as input features.

Training and Test Data

In our experiment, we are also interested in the bootstrapping
problem, that means, how the accuracy of the prediction will
develop over time when we start with no data at all. This corre-
sponds to a realistic scenario of a fresh deployment of sensors
that has not yet observed any data at all. We simulate therefore
how the training data as well as the algorithms will develop
over time. For each day d,, with n € {0,...,60} for which we
have collected data, we use all data from the previous days
do,...,d,_1 as training data to create a new model R,,. Data of
day d,, serves as test data. In our context, it is important to take
data from entire days as test data, and remove those entire days
from the training data, to avoid data leakage. Simply taking
out 20 % of random values over a longer period is not good
enough. The relatively slowly changing conditions would lead
that the training data to contain very similar samples as there
are in the test data. Instead, our method of using an entire day
as test data and only using data from previous days as training
data corresponds to a causal way that gives realistic results.

Figure 6 shows at its top the number of data samples in the
training and test sets (on a logarithmic scale). The lower
curve shows the samples from each day, which are used as
test data for that day. Its minimum is on the 15th of April,
where there was very little training data because the batteries
of all nodes were fully charged. The upper curve shows the
training data used for building the model on that day. Since
the training data for day d,, is the collective test data of all
days dy,...,d,_| before it, the number of training samples
monotonously increases.
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Figure 6. Top: Number of instances of training and testing data. Middle and bottom: Correlation coefficient and RRSE (root relative squared error)

for the models built for each day.

Attribute Selection

To improve the accuracy of solar power prediction, we used
the Ranker method in [25] for attribute selection to rank at-
tributes and to perform attribute selection by the removal of
redundant and irrelevant attributes. As a result, the selected list
of features, sorted by ascending attribute rank-order, is the fol-
lowing: zenith, azimuth, low clouds, high clouds, temperature
forecast, medium clouds, symbol.

Machine Learning Algorithms

In our work, we have selected a subset of widely-used ML al-
gorithms, namely k-nearest-neighbor (k-NN), Support Vector
Machines (SVM), Artificial Neural Networks (ANN), Random
Tree (RT) decision tree learner and Random Committee (RC),
which are briefly described hereafter. For more details, please
refer to [25].

e k-nearest-neighbor (k-NN) is an instance-based lazy learner
that compares the value to predict with existing values gath-
ered from the & closest training instances (neighbors) using
a distance metric. This algorithm requires all the training
instances to be kept in memory and does not produce any
model.

e Support Vector Machines (SVM) is a technique that builds
cutting hyperplanes, which separate the data in an optimal
manner.

e Artificial Neural Networks (ANNSs) consist of an intercon-
nected network of nodes (artificial neurons). Each node
maps complex relationships between inputs and outputs
using weights learned iteratively over the training data by
the backpropagation learning algorithm.

e Decision Trees are prediction models in the form of a tree
graph that are built by binary splitting the set of data us-
ing a recursive greedy search algorithm. We selected the
RandomTree decision tree algorithm that considers a given
number of random features at each node.

e Random Committee is a meta technique that can be applied
on other algorithms in order to turn them into more powerful
learners. It builds an ensemble of base algorithms and
averages their predictions in a way to avoid overfitting and
reduce the variance of the algorithm output. This technique
makes sense if the base algorithm is randomized. In our
work, Random Committee works only for ANN and Random
Tree since the base of these algorithms is randomized, which
is not the case for k-NN and SVM.

Building Machine Learning Models

For each of the tested ML algorithms, we built models using
the entire training set by means of the Waikato Environment
for Knowledge Analysis (Weka) [25]. In this work, we have
conducted several tests to select a good tuning for each algo-
rithm. However, tuning these models further is beyond the
scope of the paper.

EVALUATION AND DISCUSSION

The middle of Figure 6 shows the correlation coefficient for
the various models on each day. This coefficient measures
the statistical correlation between the actual values of solar
power and the predicted values. It ranges from —1 for perfect
negative correlation, through O when there is no correlation,
to 1 when the results are perfectly correlated. The bottom
of Figure 6 shows the root relative squared error (RRSE),
which is one of the error evaluation measures described in [25].
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Figure 7. Average correlation coefficients and RRSE for the models.

Note that the best numerical prediction model is still the best
no matter which error measure is used. Figure 7 shows the
average correlation coefficients and the average RRSE for all
models, with a 95 % confidence interval.

The accuracy of the prediction depends on several factors:

e The accuracy of the weather forecast, this means to which
degree the weather forecast corresponds to the actual
weather at the sensor node.

e New weather situations that have not been observed before.

e Missing data, which can happen either due to node failures
or transmissions problems.

e Long periods with fully charged batteries in many nodes
at the same time. In these cases, the system does not learn
anything about the solar energy available.

The RRSE of most models spike on the 6th and 7th of May
On these days, the pattern of reported solar energy was sig-
nificantly different from the two weeks before. Revisiting
Figure 5, we see that the most common pattern was similar to
that on April 12th with a spike in charging and a fully charged
battery. However, in some other days where we also registered
an increased error, the intake is distributed over time and with-
out any identifiable pattern. This could be due to a number of
factors (i.e., weather forecast and battery level) and we believe
with more data such variations will be less frequent.

Concerning the lack of learning data when batteries are fully
charged, we can see this effect in the period following May
25th, when most batteries were full due to very good weather.
This resulted in few samples for the solar intake, that were in
addition taken in short periods between fully charged batteries,
which is why they may not accurately represent the actual
solar energy.

Quality of the Predictors

An overall analysis of the results for each predictor reveals
their different properties. k-NN is not a good predictor. It is
unstable, with the lowest correlation coefficient and highest
RRSE. The other predictors are better. SVM is quite stable and
its average RRSE is 76 % with a low standard deviation. RC-
RT has the lowest RRSE and a high value of the correlation
coefficient. In summary, SVM, RC-ANN and RC-RT are good
predictors. They may even improve with further tuning of
these algorithms.

Suitability of the Prediction

Since the learning process starts at the second day of the sys-
tems operation with only the data from day one, the prediction
accuracy is understandably low during the first days. How-
ever, we see that it is improving and, for the methods other
than k-NN, remains relatively stable. Based on our 60 days of
observations, we argue that the predictions are already useful
for a planning algorithm. The predictions rely on the accuracy
of the weather forecast, which itself is prone to errors. In
addition, the weather at the test site in Trondheim, Norway, is
very volatile. Of course, one remedy would be to maintain a
dedicated local weather station. However, with that we would
make the deployment of IoT nodes more complicated; our
intention is to only rely on easily available public weather
forecast data.

CONCLUSION

We have presented an approach to predict the solar energy
input for constrained IoT nodes based on numerical weather
forecasts that are typically easily available. This allows for
effective energy-budget planning, which is much needed for
resource-constrained nodes. We have also observed that the
choice of machine learning method matters. k-NN shows
the biggest drop in accuracy on some days, while the other
algorithms stay more stable.

Given that the predictions are based on weather forecast data,
which itself contains uncertainties, a planning algorithm needs
to take the accuracy of the prediction into account. It can for
instance analyze confidence intervals, study best and worst
cases and eventually select the most adequate strategy. In
addition, we have observed that the behavior of the charging
controllers used in off-the-shelf IoT nodes leads to less training
data, since they cannot measure the available solar energy once
the battery is full. This should have influence on the design of
solar-driven embedded IoT nodes; they should be able to gain
some insights on the available solar energy even when fully
charged.
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